## **INSTRUCTION MANUAL**

## SERVA Streptavidin Agarose Resin AgaroseResin for Affinity Purification of Biotinylated Biomolecules

(Cat. no. 42178)



SERVA Electrophoresis GmbH • Carl-Benz-Str.7 • D-69115 Heidelberg Telefon: +49 6221 13840-0 • E-Mail: info@serva.de • Internet: www.serva.de

#### Contents

| 1.   | SERVA Streptavidin Agarose Resin                                                | 2 |
|------|---------------------------------------------------------------------------------|---|
| 1.1. | General information                                                             | 2 |
| 1.2. | Storage conditions                                                              | 2 |
| 2.   | Immobilization of biotinylated biomolecules using gravity flow affinity columns | 2 |
| 2.1. | Elimination of the preservative                                                 | 2 |
| 2.2. | Equilibration of the agarose resin                                              | 2 |
| 2.3. | Sample application                                                              | 3 |
| 2.4. | Washing of the agarose resin                                                    | 3 |
| 2.5. | Elution                                                                         | 3 |
| 3.   | Batch immunoaffinity purification of proteins                                   | 4 |
| 3.1. | Forming of the immune complex                                                   | 4 |
| 3.2. | Equilibration of the agarose resin                                              | 4 |
| 3.3. | Binding of the immune complex to the agarose resin                              | 4 |
| 3.4. | Washing of the agarose resin                                                    | 5 |
| 3.5. | Elution                                                                         | 5 |
| 4.   | Immunoaffinity purification of a protein using gravity flow affinity columns    | 5 |
| 4.1. | Equilibration of the agarose resin                                              | 5 |
| 4.2. | Antibody binding                                                                | 6 |
| 4.3. | Washing of the agarose resin                                                    | 6 |
| 4.4. | Sample application                                                              | 6 |
| 4.5. | Elution                                                                         | 6 |
| 5.   | Ordering information                                                            | 7 |

## 1. SERVA Streptavidin Agarose Resin

## 1.1. General information

Streptavidin agarose resin is optimized for the purification of biotinylated biomolecules. The following protocols are general guidelines only. Conditions should be optimized for each application.

## 1.2. Storage conditions

Store at +2 °C to +8 °C (35 °F – 46 °F). Do not freeze. If stored at the recommended temperature, the product will be suitable for use until: see label.

# 2. Immobilization of biotinylated biomolecules using gravity flow affinity columns

## 2.1. Elimination of the preservative

- Shake the bottle of streptavidin agarose resin suspension gently to get a homogeneous suspension.
- Immediately pipette the suspension into an appropriately sized column.
- Remove first the upper and the lower cap of the column, to allow elimination of the preservative by gravity flow.

## 2.2. Equilibration of the agarose resin

#### **Binding buffer:**

20 mM Na<sub>2</sub>HPO<sub>4</sub> (SERVA cat. no. 30200), 150 mM NaCl (SERVA cat. no. 30183), pH 7.4

- Add 5 to 10 bed volumes of binding buffer to agarose resin.
- Mix gently to get a homogeneous suspension.
- Sediment the resin by centrifugation (5 min at 500x g).
- Decant the supernatant carefully and discard it.
- Repeat the equilibration step 2 times.
- A 50 % (v/v) suspension of the pre-equilibrated resin may be used directly or stored at + 4 °C (39 °F) for up to 1 month.

## 2.3. Sample application

- Close the column outlet.
- Add the sample to the equilibrated resin.
- Close the column inlet.
- Mix the suspension gently at room temperature for minimum 30 min.
- In some cases, a slight increase of contact time may facilitate binding.
- Remove the lower cap of the column, collect the flow through and discard it.

## 2.4. Washing of the agarose resin

- Close the column outlet.
- Add 10 bed volumes of binding buffer to agarose resin.
- Close the column inlet.
- Mix gently to get a homogeneous suspension.
- Remove the lower cap of the column, collect the flow through and discard it.
- Repeat the washing step until the absorption value reaches a base line.

## 2.5. Elution

#### Elution buffer:

8 M Guanidine-HCI (SERVA cat. no. 24205), pH 1.5

- Close the column outlet
- Add 1 bed volume of elution buffer.
- Close the column inlet.
- Mix thoroughly for 10 min at room temperature.
- After sedimentation of the resin, remove the lower cap of the column, collect the flow through and store on ice.
- Repeat the elution step at least 2 times.
- Determine the protein content of each fraction by absorption measurement.
- Pool the fractions containing the sample and immediately dialyze or desalt the sample if needed for downstream applications.

**Alternative procedure:** Boil the resin in 2 % SDS with 400 mM urea. This will also dissociate streptavidin monomers.

## 3. Batch immunoaffinity purification of proteins

Prior to the affinity purification the protein of interested is precipitated with the biotinylated antibody. Afterwards the antigen-antibody complex is incubated with the streptavidin agarose resin for binding.

## **3.1. Forming of the immune complex**

**Note:** The amount of antigen and the incubation time strongly depends on the antigen-antibody pair. Therefore, it may be necessary to optimize both.

#### **Binding buffer:**

```
20 mM Na<sub>2</sub>HPO<sub>4</sub> (SERVA cat. no. 30200), 150 mM NaCl (SERVA cat. no. 30183), pH 7.4
```

- Solubilize antigen in 50 µl of binding buffer and add the biotinylated antibody in a 1.5 ml tube.
- Adjust the sample volume to 0.2 ml with binding buffer.
- Incubate the sample for 3 4 h to overnight at +4 °C.

### 3.2. Equilibration of the agarose resin

#### Binding buffer:

20 mM Na<sub>2</sub>HPO<sub>4</sub> (SERVA cat. no. 30200), 150 mM NaCl (SERVA cat. no. 30183), pH 7.4

**Important:** Use approx. 3 mg biotinylated antibody per ml settled streptavidin agarose resin.

- Shake the bottle of Streptavidin agarose resin suspension gently to get a homogeneous suspension.
- Mix the streptavidin agarose resin to ensure an even suspension.
- Immediately pipette the suspension to an appropriate tube.
- Centrifuge for  $1 2 \min at 1,000 x g$ .
- Remove the supernatant carefully and discard it.

### **3.3.** Binding of the immune complex to the agarose resin

- Pipette the appropriate amount of resin into the tube containing the antigenbiotinylated antibody mixture.
- Incubate the sample with mixing for 1 h at room temperature or at +4 °C.

#### 3.4. Washing of the agarose resin

#### Binding buffer:

20 mM Na<sub>2</sub>HPO<sub>4</sub> (SERVA cat. no. 30200), 150 mM NaCl (SERVA cat. no. 30183), pH 7.4

- Wash the resin-bound complex with 0.5 1.0 ml of binding buffer.
- Centrifuge for  $1 2 \min at 1,000 x g$ .
- Remove the supernatant.
- Repeat the washing step at least 4 times and remove the final wash.

#### 3.5. Elution

#### **Elution buffer:**

100 mM Glycine (SERVA cat. no. 23390)-HCl, pH 2.5

- Add elution buffer to the resin and mix gently.
- Centrifuge for  $1 2 \min at 1,000 x g$ .
- Immediately transfer the supernatant into another tube containing 1 M Tris, pH 7.5 9.0 (100 µl/1 ml supernatant).

Alternative procedure: Boil the resin-bound complex in SDS PAGE sample buffer.

# 4. Immunoaffinity purification of a protein using gravity flow affinity columns

The first step of this purification method is the binding of the biotinylated antibody on the streptavidin agarose resin. Afterwards, the resin-bound antibody is incubated with the sample containing the protein of interest for binding.

#### 4.1. Equilibration of the agarose resin

#### Binding buffer:

20 mM Na<sub>2</sub>HPO<sub>4</sub> (SERVA Cat. No. 30200), 150 mM NaCl (SERVA Cat. No. 30183), pH 7.4

- Shake the bottle of streptavidin agarose resin suspension gently to get a homogeneous suspension.
- Mix the streptavidin agarose resin to ensure an even suspension.
- Immediately pipette the suspension in an appropriate column.
- Wash with 5 10 column volumes of binding buffer.

## 4.2. Antibody binding

- Close the column outlet.
- Apply the biotinylated antibody/protein (use approx. 3 mg of biotinylated antibody/ml of settled resin).
- Close the column inlet.
- Keeping sample and resin in contact at least for 1h at room temperature.
- In some cases a slight increase of contact time may facilitate binding.
- Remove the lower cap of the column and collect the flow through and discard it.

## 4.3. Washing of the agarose resin

- Close the column outlet.
- Add 10 bed volumes of binding buffer to agarose resin.
- Close the column inlet.
- Mix gently to get a homogeneous suspension.
- Repeat the washing step until the absorption  $A_{280nm}$  is less than 0.01 0.02.

## 4.4. Sample application

- Close the column outlet.
- Apply the sample containing the antigen onto the column.
- Close the column inlet.
- Mix the suspension gently at room temperature for min. 30 minutes.
- In some cases a slight increase of contact time may facilitate binding.
- Remove the lower cap of the column, collect the flow through and discard it.
- Wash the resin as described in 4.3.

## 4.5. Elution

#### Elution buffer:

100 mM Glycine (SERVA Cat. No. 23390)-HCl, pH 2.5)

- Close the column outlet
- Add 1 bed volume of elution buffer.
- Close the column inlet.
- Mix thoroughly for 10 min at room temperature.
- After sedimentation of the resin, remove the lower cap of the column, collect the flow through and store on ice.
- Repeat the elution step at least 2 times.
- Determine the protein content of each fraction by absorption measurement.
- Immediately neutralize the fractions with 1M Tris, pH 8.0 (100  $\mu$ l/1 ml eluate) and pool them.

Alternative procedure: Elution with 0.1 M acetic acid.

## 5. Ordering information

| Reagents                         |                                  |                       |  |
|----------------------------------|----------------------------------|-----------------------|--|
| Product                          | Cat. no.                         | Size                  |  |
| Na <sub>2</sub> HPO <sub>4</sub> | 30200.01                         | 500 g                 |  |
| KH <sub>2</sub> PO <sub>4</sub>  | 26870.01                         | 500 g                 |  |
| KCI                              | 26868.02                         | 1 kg                  |  |
| NaCl                             | 30183.01                         | 1 kg                  |  |
| Guanidine-HCI                    | 24205.02                         | 1 kg                  |  |
| Urea                             | 24524.02<br>24524.03             | 1 kg<br>5 kg          |  |
| Glycine                          | 23390.02<br>23390.04<br>23390.03 | 500 g<br>1 kg<br>5 kg |  |